

Fig. 6. Same as Fig. 5, except that emphasis is on next-nearest-neighbor pairs. (a) Undeformed state; all three <100> NNN directions contain AA and BB pairs only. (b) to (d) Alternative arrangements after (\$\bar{1}\$12) [1\$\bar{1}\$1] slip, showing AB pairs (double bars) induced in all three <100> directions.

Since $\Delta N_{\rm BB}$ occurs in [111], [111] and [111], we have from eqn. (1)

$$\cos^{2} \varphi = (\cos^{2} \varphi_{[111]} + \cos^{2} \varphi_{[\bar{1}11]} + \cos^{2} \varphi_{[11\bar{1}]})$$

= $-\frac{2}{3} (\alpha_{1} \alpha_{2} - \alpha_{2} \alpha_{3} + \alpha_{3} \alpha_{1}),$ (15)

which means that the [1 $\overline{11}$] slip direction is the effective direction of unlike pairs, which is a hard direction of magnetization for FeCo. In the general case, where the slip direction of slip system i has the direction cosines d_{1i} , d_{2i} , d_{3i} ,

$$\cos^{2} \varphi_{i} = -2(d_{1i}d_{2i}\alpha_{1}\alpha_{2} + d_{2i}d_{3i}\alpha_{2}\alpha_{3} + d_{3i}d_{1i}\alpha_{3}\alpha_{1})$$

$$\equiv -2f_{i}(\alpha_{1}, \alpha_{2}, \alpha_{3}). \tag{16}$$

The insertion of eqns. (14) and (16) into eqn. (1) then leads to

$$E = -\frac{1}{2}N l p_0 p' s^2 \sum_{i} |S_i| f_i(\alpha_1, \alpha_2, \alpha_3) .$$
 (17)

(b) Short-range order case

For the short-range order case, the two nearest-neighbor bonds associated with each $\langle 111 \rangle$ direction (in a unit cell) contain a total of $(1-\sigma)/2$ BB pairs in the undeformed state (see Appendix). After slip, $\sigma = 0$ for the $3\langle 111 \rangle$ directions other than the slip direction. Hence the gain in BB pairs in each of these directions is $\sigma/2$, or $\sigma/2a^2\sqrt{6}$ per

TABLE III: values of ε and d (referred to cubic axes) for the twelve $\{112\}$ $\langle 111 \rangle$ slip systems

No. of slip	Slip	Slip									
system	plane	direction	$2\varepsilon_{xx}$	$2\varepsilon_{yy}$	$2\varepsilon_{zz}$	$4\varepsilon_{yz}$	$4\varepsilon_{zx}$	4ε _{xy}	$3d_1d_2$	$3d_2d_3$	$3d_3d_1$
1	(112)	111	S_1	S_1	$-2S_1$	$-S_1$	$-S_1$	$2S_1$	1	1	1
2	$(1\overline{2}1)$	111	S_2	$-2S_2$	S_2	$-S_2$	$2S_2$	$-S_2$	1	1	1
3	(211)	111	$-2S_3$	S_3	S_3	$2S_3$	$-S_3$	$-S_3$	1	1	1
4	(112)	111	S_4	S_4	$-2S_4$	S_4	S_4	$2S_4$	1	-1	-1
5	$(\overline{1}21)$	111	$-S_5$	$2S_5$	$-S_5$	$-S_5$	$2S_5$	S_5	1	-1	-1
6	(211)	111	$2S_6$	$-S_6$	$-S_6$	$2S_6$	$-S_6$	S_6	1	-1	-1
7	(112)	Ī11	$-S_7$	$-S_7$	$2S_7$	S_7	$-S_7$	$2S_7$	-1	1	-1
8	(211)	Ī11	$-2S_{8}$	S_8	S_8	$2S_8$	S_8	S_8	-1	1	-1
9	$(12\overline{1})$	Ī11	$-S_9$	$2S_9$	$-S_9$	S_9	$2S_9$	$-S_9$	-1	1	-1
10	$(21\overline{1})$	111	$2S_{10}$	$-S_{10}$	$-S_{10}$	$2S_{10}$	S10	$-S_{10}$	-1	-1	1
11	(121)	111	S_{11}	$-2S_{11}$	S_{11}	S_{11}	$2S_{11}$	S_{11}	-1	-1	1
12	(T12)	1 1 1	$-S_{12}$	$-S_{12}$	$2S_{12}$	$-S_{12}$	S_{12}	$2S_{12}$	-1	-1	1

TABLE IV: Summary of results based on $\{112\}$ $\langle 111 \rangle$ slip

				The state of the s	
Rolling plane	Rolling direction	Active slip systems	$ S_i $	$E_{ m NN}$	Easy* axis
(001)	[110]	7,12	r/2	$\left(\frac{E_1 r}{6}\right) \alpha_1 \alpha_2$	TD
(115)	[110]	4,7,8,11,12	$ S_4 = 2r/27$	$\left(\frac{E_1 r}{162}\right) (31\alpha_1 \alpha_2 + 2\alpha_2 \alpha_3 + 2\alpha_3 \alpha_1)$	TD
			$ S_8 = S_{11} = 6r/27$ $ S_7 = S_{12} = 21r/54$		
(112)	[110]	4,7,8,11,12	r/3	$\left(\frac{E_1 r}{18}\right) (3\alpha_1 \alpha_2 + \alpha_2 \alpha_3 + \alpha_3 \alpha_1)$	RPN
(111)	[110]	4,7,8,11,12	$ S_4 = 2r/3$	$\left(\frac{E_1 r}{54}\right) (5\alpha_1 \alpha_2 + 6\alpha_2 \alpha_3 + 6\alpha_3 \alpha_1)$	RPN
		11	$ S_8 = S_{11} = 2r/9$ $ S_7 = S_{12} = 7r/18$		
(110)	[110]	1,4,7,12	r/2	0	at la

^{*} Relative among the three symmetry directions of rolled strip. TD-transverse direction, RPN-rolling plane normal.

unit {112} area. To this quantity we multiply by a factor $(p'|S|/d=p'|S|\sqrt{6/a})$ as before, leading to the expression

$$\Delta N_{\rm BB} = p'|S| \left(\frac{\sqrt{6}}{a}\right) \left(\frac{\sigma}{2a^2\sqrt{6}}\right) = \frac{1}{4}Np'\sigma|S|.$$
 (18)

Insertion of eqns. (16) and (18) into eqn. (1) then leads to

$$E = -\frac{1}{2}Nlp'\sigma\sum_{i}|S_{i}|f_{i}(\alpha_{1},\alpha_{2},\alpha_{3})$$
 (19)

for the SRO case.

Finally, by combining the LRO and SRO expressions of eqns. (17) and (19), we obtain

$$E = -\frac{1}{2}E_1 \sum_{i} |S_i| f_i(\alpha_1, \alpha_2, \alpha_3), \qquad (20)$$

where $E_1 = Nlp'(p_0 s^2 + \sigma)$ as before. Equation (20) is the expression for the slip-induced anisotropy energy developed by $\{112\}\langle 111\rangle$ slip and based on NN interactions.

(c) Applications to rolling

As in the treatment of $\{110\}\langle 111\rangle$ slip in Part 2 above, eqn. (20) has been applied to rolling of $(001)[\overline{1}10]$, $(115)[\overline{1}10]$, $(112)[\overline{1}10]$, $(111)[\overline{1}10]$ and $(110)[\overline{1}10]$ orientations. For the convenience of calculations, the appropriate parameters (similar to